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Abstract
A frontal collision of two point-like charged particles which are asymptotically
free in the remote past and in the distant future is considered. Ten conserved
quantities corresponding to the symmetry of a closed system of particles and
electromagnetic field under the Poincaré group are expressed in terms of
particle variables. It is shown that an interference of outgoing electromagnetic
waves (retarded Liénard–Wiechert solutions) ensures the action of the field
of one source on another (mutual interaction). The combination of wave
motions accords with the modified Wheeler and Feynman absorber theory of
radiation where (acausal) ‘perfect absorption’ is replaced by an interference
phenomenon.

PACS numbers: 41.20.−q, 03.50.−z

1. Introduction

In classical field theory particles interact with one another through the medium of a field which
has its own uncountable infinite degrees of freedom. Roughly speaking, the set of equations
of motion is divided into two subsets: (i) one defines the evolution of field variables; (ii) the
other describes the behaviour of the particles.

One can try to solve the first subset in order to express the field variables in terms of
particle variables. These ‘fields’ do not have degrees of freedom of their own: they are
functionals of particle paths. Substituting these direct particle fields [1] for ‘true’ fields in
the second subset yields equations of motion in particle variables. This immediately implies
action-at-a-distance: the particles interact with one another directly. Nevertheless, the delay
of disturbances which are propagated with a finite velocity is taken into account. As discussed
in [1], the concept of delayed action-at-a-distance was first described by Gauss in 1845.

Liénard–Wiechert fields are the solutions of Maxwell equations with point-like sources. In
his classical paper [2], Dirac used them in the law of conservation of the total four-momentum
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of a composite (particle plus field) system. It provides the foundation for his derivation of the
radiation–reaction force.

Teitelboim [3] divides the energy–momentum carried by a (retarded) Liénard–Wiechert
field into a bound component and a radiative component. The bound part is permanently
‘attached’ to the charge and is carried along with it; the radiation part detaches itself from the
charge and leads an independent existence (i.e. the integral of the Larmor relativistic rate of
radiated energy–momentum over the particle’s world line). In fact, a charged particle cannot
be separated from its bound electromagnetic ‘cloud’, so that the four-momentum of the particle
is the sum of the mechanical momentum and the electromagnetic bound four-momentum.

The author [4] has found recently ten conserved quantities corresponding to the symmetry
of the composite system of point-like charged particle and its own electromagnetic field
under Poincaré group. (It was assumed that the particle moves arbitrarily.) Similarly
to the energy–momentum, the angular momentum and centre-of-mass conserved quantity
decompose naturally into a particle component and a radiative component. The former
depends on the instant characteristic of the charged particle while the latter accumulates with
time. (The angular momentum arises from the invariance of the system under space rotations
while the centre-of-mass conserved quantity is due to invariance under Lorentz transformation,
see [5].)

The Liénard–Wiechert field has a singularity at the position of a particle. A divergent
self-energy term arises unavoidably whenever one introduces a point charge in classical
electrodynamics. Teitelboim shows [3] that it cannot be separated from the four-momentum
of a charged particle. The angular momentum and centre-of-mass conserved quantity
contain the (divergent) four-momentum in the proper place [4]. To reconcile the theory
with observation, an additional ‘renormalization assumption’ is necessary. It is sufficient to
introduce finite four-momenta of the charged particles as those which possess the true physical
meaning.

Conserved quantities place stringent requirements on the dynamics of the system. They
demand that the change in electromagnetic field momentum and total angular momentum
should be balanced by a corresponding change in the momentum and total angular momentum
of the particle, so that the total four-momentum (p0,p) and angular momentum (J,K) are
properly conserved.

To construct the particle equation of motion we only need to consider the vicinity of the
world line at a fixed instant of time. Derivatives of the angular momentum and centre-of-mass
conserved quantity constitute a system of six linear equations in four particle momentum
components (see [4], equations (3.10) and (3.11)). It was pointed out that Teitelboim’s
expression [3] for the four-momentum of accelerated point-like charge,

p
µ
part = muµ − 2

3e2aµ (1.1)

is inconsistent with the structure of the derivative of the centre-of-mass conserved quantity.
(Teitelboim’s expression agrees with the Lorentz–Dirac equation [2] of motion of a charged
particle under the influence of an external force as well as its own electromagnetic field.)
Moreover, the system does not possess a solution whenever a particle’s motion is accelerated
(if not the usual velocity term muµ satisfies this system). Therefore, if the particle is not acted
upon by an external force, the motion satisfies the law of inertia (Newton’s first law). The
problem of runaway solutions (where acceleration increases exponentially with time) does
not occur. The question is what expression should be used instead of (1.1) to describe the
four-momentum of a point-like charge in the presence of an external device?

In Rohrlich’s opinion, the answer cannot be found in the usual analysis of a heuristic
model. In ([5], section 6.2) Rohrlich states that the object is ‘to find a formulation of classical



Wheeler and Feynman electrodynamics within the framework of retarded causality 9443

charged particle theory which does not require any reference to, or assumptions about, the
particle structure, its charge distribution and its size’. A more fruitful clue is the investigation
of conserved quantities, since they place stringent requirements on the particle’s behaviour.
In this paper, we shall determine the ten conserved quantities corresponding to Poincaré
symmetry of a closed system of two point-like charged particles and their electromagnetic
fields. To simplify the problem as much as possible we consider a typical scattering event: a
frontal collision of two asymptotically free charged particles. The words ‘asymptotically free’
mean the asymptotic conditions defined in ([5], section 6.4).

An external device will be modelled by a very massive particle (i.e. one very massive
charge, and one light one).

The so-called direct particle fields [1] will be used in the calculation of the energy–
momentum and total angular momentum carried by the ‘two-particle’ electromagnetic field.
They are derived from Liénard–Wiechert potentials as solutions of Maxwell equations for
arbitrarily moving point-like sources. Therefore, we work within the realm of action-at-a-
distance electrodynamics [1].

The theory was elaborated by Wheeler and Feynman [6]. It is based on the following
assumptions ([6], p 160):

(1) ‘An accelerated point charge in otherwise charge-free space does not radiate
electromagnetic energy.

(2) The fields which act on a given particle arise only from other particles.
(3) These fields are represented by one-half the retarded plus one-half the advanced Liénard–

Wiechert solutions of Maxwell’s equations. This law is symmetric with respect to past
and future.

(4) Sufficiently many particles are present to absorb completely the radiation given off by the
source’.

Since the source emanates in all possible directions, all the particles of the universe
are required to absorb the radiation completely. They constitute a perfect absorber which
possesses a remarkable twofold property: it cancels the (acausal) advanced part of the fields
acting on a given particle and doubles the retarded one. Therefore, the complete absorption
is the crucial issue of the theory. For this reason Wheeler and Feynman called it the absorber
theory of radiation.

Rigorous calculations performed in the present paper reveal that the combination of
retarded Liénard–Wiechert fields forms a resultant field with the desired properties. Then the
‘perfect absorption’ should be replaced by the interference of outgoing waves in Wheeler and
Feynman electrodynamics. It allows us to reconcile the Wheeler and Feynman theory with
the concept of retarded causality.

2. Preliminaries

We choose metric tensor ηµν = diag(−1, 1, 1, 1) for Minkowski space M4. We use the
Heaviside–Lorentz system of units with the velocity of light c = 1. Summation over repeated
indices is understood throughout the paper; Greek indices run from 0 to 3, and Latin indices
from 1 to 3. The particles’ coordinate, velocity, etc are labelled a or b.

We consider a typical scattering event where two particles are asymptotically free in the
remote past and in the distant future (see [5], section 6.4). Average velocities are not large
enough to initiate particle creation and annihilation.
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We suppose that the particles move along the z-axis. Their world lines

ζa : R → M4 t �→ (t, 0, 0, za(t)) (2.1)

are meant as local sections of trivial bundle (M4, i, R) where the projection

i : M4 → R (y0, yi) �→ y0 (2.2)

defines the instant form of dynamics [7].
Having stated our notation we now write the components of total four-momentum of a

closed system of particles and electromagnetic field as follows:

pν(t) = pν
mech(t) +

∫
�t

dσµT µν. (2.3)

The first term is a sum of mechanical momenta of the particles while the volume integral defines
the momentum four-vector of the electromagnetic field. We define dσµ the vectorial surface
element on a spacelike hypersurface �t which intersects world lines ζ1 and ζ2 at the points
(t, 0, 0, z1(t)) and (t, 0, 0, z2(t)), respectively. (By �t we take a fibre [8] of ‘instant’ bundle
(2.2) over t ∈ R.) By T µν we denote the components of the Maxwell energy–momentum
tensor density

4πT µν = f µλf ν
λ − 1/4ηµνf κλfκλ (2.4)

where field strengths f µλ are the sum of direct particle fields f
µλ

(1) and f
µλ

(2) associated with the
first and second particles, respectively. (The retarded Liénard–Wiechert solutions are meant.)
So, the total electromagnetic field stress–energy tensor (2.4) is

T µν = T
µν

(1) + T
µν

(2) + T
µν

int . (2.5)

The T
µν

(a) term is given by the expression (2.4) where ‘total’ field strengths f µλ are replaced

by ‘individual’ ones f
µλ

(a) . The interference term

4πT
µν

int = f
µλ

(1) f
ν
(2)λ + f

µλ

(2) f
ν
(1)λ − 1/4ηµν

(
f κλ

(1) f
(2)
κλ + f κλ

(2) f
(1)
κλ

)
(2.6)

describes the combination of electromagnetic fields.

3. ‘Interference’ coordinate system

The volume integration of ‘one-particle’ energy–momentum tensor density is performed in
[4]. It is shown that the computation of the electromagnetic field momentum which flows
across hyperplane �t = {y ∈ M4 : y0 = t} at a fixed instant of time t does not contradict the
corresponding calculation [2, 3, 5] performed in a manifestly covariant way. An appropriate
coordinate system for flat spacetime is used in [4]. It is a specific example of the Newman
and Unti [9] class of coordinate systems centred on an (accelerated) world line ζ : R → M4

of the particle. Minkowski space M4 becomes a disjoint union of fibres i−1(t) := �t of the
trivial bundle (2.2). A fibre �t is a disjoint union of (retarded) spheres centred on a world line
of the particle. The sphere

S(z(u), t − u) =
{

y ∈ M4 : (y0 − u)2 =
∑

i

(yi − zi(u))2, y0 = t, t − u > 0

}

is the intersection of the future light cone, generated by null rays emanating from z(u) ∈ ζ

in all possible directions, and the hyperplane �t . For the fixed instant t the retarded time
parameter u ∈ ]−∞, t] ⊂ R. Points on the sphere are distinguished by spherical polar angles.
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Figure 1. The sphere S1(z1(t1), t − t1) is the intersection of the future light cone with vertex at
(t1, 0, 0, z1) ∈ ζ1 and hyperplane �t . The sphere S2(z2(t2), t − t2) is the intersection of �t and
the forward light cone of (t2, 0, 0, z2) ∈ ζ2. The support of the integral of the interference term
(2.6) is the circle C(Z, r) = S1 ∩ S2.

The main goal of the present paper is to find the components of total four-momentum
carried by the electromagnetic field of two charged particles. Volume integration of the first
term of the ‘two-particle’ stress–energy tensor (2.5) can be handled via the coordinate system
centred on the first world line. To calculate the integral of the second term of tensor (2.5) we
use the coordinate system centred on the second world line. Another coordinate system is
necessary to compute the interference part of the energy and momentum carried by radiation.

It is suitable to consider the situation from a geometrical point of view as shown in
figure 1. To sum up the product of the fields produced at given instants t1 and t2, we
must restrict the integral to the intersection of the sphere S(z1(t1), t − t1) and the sphere
S(z2(t2), t − t2). It is the circle C(Z, r) centred at the point

Z(t, t1, t2) = 1

2
[z1(t1) + z2(t2)] +

(t1 − t2)(2t − t1 − t2)

2[z1(t1) − z2(t2)]
. (3.1)

(We assume that z1(t1) > z2(t2) for all values of the retarded times t1 ∈ ] −∞, t] and
t2 ∈ ] −∞, t].) The square of the radius r of the circle can be expressed in the following
alternative ways:

r2 = (t − t1)
2 − (Z − z1)

2

= (t − t2)
2 − (Z − z2)

2

= 1
2 [(t − t1)

2 + (t − t2)
2 − q2] − (Z − z1)(Z − z2). (3.2)

The characteristics of the circle are obtained from the analysis of the triangle z1z2A with sides
|z1A| = t − t1, |z2A| = t − t2 and |z1z2| = z1(t1) − z2(t2) := q .

Figure 1 shows that one-to-one correspondence (yα) �→ (t, t1, t2, ϕ) looks like a
transformation to well-known cylindrical coordinates

y0 = t y1 = r(t, t1, t2) sin ϕ y2 = r(t, t1, t2) cos ϕ y3 = Z(t, t1, t2). (3.3)
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Figure 2. For a given t1 the retarded time t2 increases from tret
2 (t1) to tadv

2 (t1). Minimal value
tret
2 (t1) labels the vertex of the forward light cone which is punctured by the world line of the first

charge at a given point (t1, 0, 0, z1(t1)). The world line of the second charge punctures the future
light cone of this point at (tadv

2 (t1), 0, 0, zadv
2 ).

Figure 3. The sphere S2(z
ret
2 , t − tret

2 ) is the intersection of the future light cone at (tret
2 , 0, 0, zret

2 )

and �t . It touches a given sphere S1(z1, t − t1) at point N. The sphere S2(z
adv
2 , t − tadv

2 ) touches

S1(z1, t − t1) at point S. If retarded time t2 increases from tret
2 (t1) to tadv

2 (t1) the sphere S1 is
covered by circles C(Z, r) = S1 ∩ S2.
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Figure 4. The forward light cone of (tret
1 (t), 0, 0, zret

1 ) touches the second world line at the
instant of observation. Future light cones of upper vertices do not intersect it at all. For a given
t1 ∈ [tret

1 (t), t] the parameter t2 increases from tret
2 (t1) to t ′2(t, t1). The maximal value t ′2(t, t1)

labels the vertex of future light cone which touches the forward light cone of (t1, 0, 0, z1). The
minimal value of t2 is the solution tret

2 (t1) of equation (3.4).

To cover the sphere S1(z1(t1), t − t1) where t1 is fixed we change the parameter t2. The
starting point is the solution t ret

2 (t1) of the algebraic equation

t1 − t ret
2 = z1(t1) − z2

(
t ret
2

)
(3.4)

which describes the future light cone with vertex at
(
t ret
2 , 0, 0, zret

2

)
(see figure 2). The sphere

S2
(
zret

2 , t − t ret
2

)
touches a given sphere S1(z1(t1), t − t1) at the North pole (see figure 3). If

parameter t2 increases to tadv
2 (t1) being the solution of the algebraic equation

tadv
2 − t1 = z1(t1) − z2

(
tadv
2

)
(3.5)

we arrive at the South pole of the sphere S1. Equation (3.5) looks like the equation
of the backward light cone of

(
tadv
2 , 0, 0, zadv

2

)
, but it defines the future light cone with

vertex at (t1, 0, 0, z1) (see figure 2). The sphere S1 becomes the disjoint union of circles
C(Z, r) = S1 ∩ S2 if the parameter t2 changes from t ret

2 (t1) to tadv
2 (t1).

Going along the world line of the first charge we arrive unavoidably at the point t ret
1 (t)

being the solution of the algebraic equation

t − t ret
1 = z1

(
t ret
1

) − z2(t). (3.6)

The forward light cone of this point touches the world line of the second charge at point
(t, 0, 0, z2(t)) (see figure 4). Light cones of upper vertices do not intersect the second world
line at all. Spheres S1(z1(t1), t − t1) determined by t1 ∈ [

t ret
1 (t), t

]
constitute the region of

hyperplane �t which requires another parametrization. For a given instant t1 from this interval
the South pole S (see figure 5) is associated with the solution t ′2(t1) of the following equation:

2t − t1 − t ′2 = z1(t1) − z2(t
′
2). (3.7)

The North pole N is still connected with the solution t ret
2 (t1) of equation (3.4).

So, we construct the global coordinate system centred on the world line of the first particle.
It is based on the trivial fibre bundle (2.2). A fibre �t is a disjoint union of retarded spheres
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Figure 5. For a given t1 ∈ [tret
1 (t), t] the sphere S1(z1, t − t1) is a disjoint union of circles

C(Z, r) = S1 ∩ S2. Their radius r and centre coordinate Z are determined by t2. The parameter t2
increases from tret

2 (t1) (North pole) to t ′2(t, t1) (South pole); ϕ ∈ [0, 2π ].

S1 centred on the world line of the first particle. A sphere is parametrized by the retarded time
of the second particle and the polar angle. Locally the coordinate transformation is given by
equations (3.3).

In an analogous way we construct the coordinate system centred on the world line of
the second particle. If t2 ∈ ] −∞, t ret

2 (t)] then t1 ∈ [
t ret
1 (t2), t

adv
1 (t2)

]
; if t2 ∈ [

t ret
2 (t), t

]
then

t1 ∈ [
t ret
1 (t2), t

′
1(t, t2)

]
, ϕ ∈ [0, 2π[. The ends of the intervals are defined by the following

algebraic equations:

t2 − t ret
1 = z1

(
t ret
1

) − z2(t2) (3.8)

tadv
1 − t2 = z1

(
tadv
1

) − z2(t2) (3.9)

t − t ret
2 = z1(t) − z2

(
t ret
2

)
(3.10)

2t − t ′1 − t2 = z1(t
′
1) − z2(t2). (3.11)

It is worth noting that the functions t ret
1 (t2) and tadv

2 (t1) are inverted with respect to each other
as well as the pair of functions tadv

1 (t2) and t ret
2 (t1). For a fixed observation time t the functions

t ′1(t, t2) and t ′2(t, t1) are inverses too.

4. Electromagnetic fields in terms of ‘interference’ coordinates

The components of Liénard–Wiechert potentials Â(a) = A(a)
α dyα depend on the state of the

particle motion at the retarded time ta only:

A(a)
α = ea

uα(ta)

Ra(y)
. (4.1)
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Here uα(ta) are the components of velocity one-form û(a) and Ra is the so-called retarded
distance [10]:

Ra(y) = −ηαβ(yα − zα(ta))u
β(ta). (4.2)

Inserting (3.3) into (4.2) and (4.1) and taking into account (2.1), we obtain

A
(a)
0 = −ea

ra

A
(a)
1 = 0 A

(a)
2 = 0 A

(a)
3 = ea

va

ra

(4.3)

where ra = t − ta − (Z − za)va, va ≡ dza(ta)/dta .
The direct particle field is defined in terms of the four-potential (4.1) by f

(a)
αβ = A

(a)
β,α−A

(a)
α,β .

Differentiation of coordinate transformation (3.3) yields

∂

∂y0
= ∂

∂t
+

t − t1

r1

∂

∂t1
+

t − t2

r2

∂

∂t2

∂

∂y1
= −r sin ϕ

(
1

r1

∂

∂t1
+

1

r2

∂

∂t2

)
+

cos ϕ

r

∂

∂ϕ

∂

∂y2
= −r cos ϕ

(
1

r1

∂

∂t1
+

1

r2

∂

∂t2

)
− sin ϕ

r

∂

∂ϕ

∂

∂y3
= −Z − z1

r1

∂

∂t1
− Z − z2

r2

∂

∂t2
.

(4.4)

It is easy to check that the retarded time derivatives of (non-trivial) z-coordinate (3.1) of
the centre are as follows:

∂Z

∂t1
= r1

q

∂Z

∂t2
= − r2

q
. (4.5)

Having used the differential rules (4.4), we express the direct field components in terms of
‘interference’ coordinates as follows:

f
(a)
01 = −ea

r3
a

r sin ϕ aa f
(a)
02 = −ea

r3
a

r cos ϕ aa

f
(a)

03 = ea

r3
a

[(t − ta)ba − (Z − za)aa]

= ea

r3
a

[va(t − ta) − (Z − za)]
(
1 − v2

a

)
+

ea

r3
a

r2v̇a

f
(a)
12 = 0 f

(a)
13 = −ea

r3
a

r sin ϕ ba f
(a)

23 = −ea

r3
a

r cos ϕ ba.

(4.6)

In the above expressions

aa = 1 − v2
a + (Z − za)v̇a ba = va

(
1 − v2

a

)
+ (t − ta)v̇a (4.7)

where v̇a ≡ dva(ta)/dta.

5. Interference part of the electromagnetic field four-momentum

Now, we calculate the interference part of the energy and momentum carried by the ‘two-
particle’ electromagnetic field:

p
µ
int(t) =

∫
�t

dσ0 T
0µ

int . (5.1)
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An integration hypersurface �t = {y ∈ M4 : y0 = t} is a surface of constant t. The surface
element is given by dσ0 = √−g dt1 dt2 dϕ where

√−g = r1r2

q
(5.2)

is the determinant of the metric tensor of Minkowski space viewed in curvilinear coordinates
(3.3).

5.1. Interference part of space components

It is straightforward to substitute the components (4.6) into equation (2.6) to calculate the
interference part of the electromagnetic field stress–energy tensor. We obtain the following
momentum densities:

4πT 01
int = e1e2

(r1r2)3
r sin ϕ[(2t − t1 − t2)b1b2 − (Z − z1)a1b2 − (Z − z2)a2b1]

4πT 02
int = e1e2

(r1r2)3
r cos ϕ[(2t − t1 − t2)b1b2 − (Z − z1)a1b2 − (Z − z2)a2b1] (5.3)

4πT 03
int = e1e2

(r1r2)3
r2[a1b2 + a2b1].

The volume integration (5.1) of the interference part of the ‘emitted tensor’ can be
performed via the coordinate system centred on a world line either of the first particle

[∫ tret
1 (t)

−∞
dt1

∫ tadv
2 (t1)

tret
2 (t1)

dt2 +
∫ t

tret
1 (t)

dt1

∫ t ′2(t,t1)

tret
2 (t1)

dt2

]∫ 2π

0
dϕ

r1r2

q
(5.4)

or of the second particle

[∫ tret
2 (t)

−∞
dt2

∫ tadv
1 (t2)

tret
1 (t2)

dt1 +
∫ t

tret
2 (t)

dt2

∫ t ′1(t,t2)

tret
1 (t2)

dt1

]∫ 2π

0
dϕ

r1r2

q
. (5.5)

As the momentum density T 01
int is proportional to sin ϕ, p1

int vanishes due to angle
integration. The component p2

int is equal to zero because T 02
int is proportional to cos ϕ. The

third component p3
int is non-trivial only.

Integrand
√−g T 03

int has the remarkable property of being the sum of two partial
derivatives:

1

q(r1r2)2
r2[a1b2 + a2b1] = ∂

∂t1

[
r2 b2

qr1r
2
2

− (t − t1)
2
(
1 − v2

1

)
q2r2

1

]

+
∂

∂t2

[
r2 b1

qr2
1 r2

+
(t − t2)

2
(
1 − v2

2

)
q2r2

2

]
. (5.6)

(Prefactor e1e2/4π is omitted.) It is natural to integrate the first term according to the rule (5.5)
and the second one according to the rule (5.4). The angle integration gives the factor 2π .
The limits of ‘inner’ integrals are valuable only in the integration procedure. The square of
radius (3.2) is equal to zero at the end points (3.4)–(3.11). Therefore, the terms which are
proportional to r2 vanish due to ‘inner’ integration.
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The integral to be computed then takes the form

p3
int = e1e2

2

{
−

∫ tret
2 (t)

−∞
dt2

1[
z1

(
tadv
1

) − z2(t2)
]2

1 + v1
(
tadv
1

)
1 − v1

(
tadv
1

)
+

∫ t

−∞
dt2

1[
z1

(
t ret
1

) − z2(t2)
]2

1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

)
−

∫ t

tret
2 (t)

dt2
1

[z1(t
′
1) − z2(t2)]2

1 − v1(t
′
1)

1 + v1(t
′
1)

}

+
e1e2

2

{∫ tret
1 (t)

−∞
dt1

1[
z1(t1) − z2

(
tadv
2

)]2

1 − v2
(
tadv
2

)
1 + v2

(
tadv
2

)
−

∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
+

∫ t

tret
1 (t)

dt1
1

[z1(t1) − z2(t
′
2)]

2

1 + v2(t
′
2)

1 − v2(t
′
2)

}
. (5.7)

To understand the situation more thoroughly, we analyse the expressions under the integral
signs.

Let us consider the terms written in between the first braces. The third component of the
Lorentz force acting on the second charge is found under the second integral sign. Indeed,
expressions (4.6) prompt that

e1[
z1

(
t ret
1

) − z2(t2)
]2

1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

)
is the third component F

(1)
03 (ret) of the electric field strength produced by the first charge e1

which is located at the point
(
t ret
1 , 0, 0, zret

1

)
. (The other components (4.6) of f̂ (1) vanish

at points of the world line of the second particle where r = 0.) The integral of this
Lorentz force over the path of the second particle can be interpreted as the work done by this
force.

The first term contains the integrand

− e1[
z1

(
tadv
1

) − z2(t2)
]2

1 + v1
(
tadv
1

)
1 − v1

(
tadv
1

) .

It looks like the third component F
(1)
03 (adv) of the electric field strength generated by the

first charge which is located at the point
(
tadv
1 , 0, 0, zadv

1

)
. Does it mean that the field at

(t2, 0, 0, z2(t2)) depends on the state of the first charge’s motion at the advanced instant
tadv
1 (t2)? It is not true because we study the interference of outgoing waves at time t

(see figure 6). The moment tadv
1 (t2) occurs before the observation instant t.

The third integral in between the first braces looks even more exotic than the ‘advanced’
one. Indeed, the hyperplane �t seems to be a mirror for rays emanating from (t ′1, 0, 0, z1(t

′
1))

(see figure 7). And yet the retarded causality is not violated. We still consider the interference
of outgoing waves present at the observation time t.
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Figure 6. It seems that the field at (t2, 0, 0, z2) depends on the state of the first charge motion at the
retarded instant tret

1 (t2) as well as at the advanced instant tadv
1 (t2). But we study the interference of

retarded electromagnetic fields at the observation instant t. Both the moments tret
1 (t2) and tadv

1 (t2)

are before t.

Figure 7. The ends of the interval t1 ∈ [tret
1 (t2), t

′
1(t, t2)] are valuable in integration of the third

integral in between the first braces in equation (5.7) (see integration rule (5.5)). The maximal value
labels the vertex of the future light cone which touches a given forward light cone of (t2, 0, 0, z2)

at the observation instant t.

If one interchanges the words ‘first particle’ and ‘second particle’ in the above arguments
we obtain the description of integrals written in between the second braces in equation (5.7).
The situation is pictured in figures 2–5.

Our next task is to simplify the expression (5.7). Taking into account the third Wheeler
and Feynman assumption ([6], p 160) we couple the half-retarded field of the second charge
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acting on the first source and its ‘half-advanced response’:

e2

2

∫ tret
2 (t)

−∞
dt2 F

(1)
03 (adv) +

e1

2

∫ t

−∞
dt1F

(2)
03 (ret)

= −e1e2

2

[∫ tret
2 (t)

−∞
dt2

1[
z1

(
tadv
1

) − z2(t2)
]2

1 + v1
(
tadv
1

)
1 − v1

(
tadv
1

)
+

∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
]

. (5.8)

The crucial issue is that the functions tadv
1 (t2) and t ret

2 (t1) are inverses. It allows us to change
the variables

(
tadv
1 (t2), t2

) �→ (
t1, t

ret
2 (t1)

)
in the ‘advanced’ integral. Equation (5.8) becomes

−e1e2

2

[∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

1 + v1(t1)

1 − v2
(
t ret
2

) +
∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
]

= −e1e2

2

∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

v1(t1) − v2
(
t ret
2

)
1 − v2

(
t ret
2

)
− e1e2

∫ t

−∞
dt1

1[
z1(t1) − z2

(
t ret
2

)]2

1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
= 1

2

e1e2

z1(t1) − z2
(
t ret
2

)
∣∣∣∣∣
t1=t

t1→−∞
+ e1

∫ t

−∞
dt1F

(2)
03 (ret)

= 1

2

e1e2

z1(t) − z2
[
t ret
2 (t)

] + e1

∫ t

−∞
dt1 F

(2)

03 (ret). (5.9)

Secondly, we join the half-retarded field of the first charge acting on the second source and its
‘half-advanced response’:

e2

2

∫ t

−∞
dt2 F

(1)

03 (ret) +
e1

2

∫ tret
1 (t)

−∞
dt1F

(2)

03 (adv)

= e1e2

2

∫ t

−∞
dt2

1[
z1

(
t ret
1

) − z2(t2)
]2

1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

)
+

e1e2

2

∫ tret
1 (t)

−∞
dt1

1[
z1(t1) − z2

(
tadv
2

)]2

1 − v2
(
tadv
2

)
1 + v2

(
tadv
2

)
= −1

2

e1e2

z1
[
t ret
1 (t)

] − z2(t)
+ e2

∫ t

−∞
dt2 F

(1)

03 (ret). (5.10)

The remaining terms constitute the integral being a function of the end points only:

− e1e2

2

∫ t

tret
2 (t)

dt2
1

[z1(t
′
1) − z2(t2)]2

1 − v1(t
′
1)

1 + v1(t
′
1)

+
e1e2

2

∫ t

tret
1 (t)

dt1
1

[z1(t1) − z2(t
′
2)]

2

1 + v2(t
′
2)

1 − v2(t
′
2)

= e1e2

2

∫ t

tret
1 (t)

dt1
1

[z1(t1) − z2(t
′
2)]

2

v1(t1) + v2(t
′
2)

1 − v2(t
′
2)

= −1

2

e1e2

z1(t) − z2
[
t ret
2 (t)

] +
1

2

e1e2

z1
[
t ret
1 (t)

] − z2(t)
. (5.11)
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Summing up (5.9)–(5.11) we finally obtain the desired expression which does not contain
advanced quantities:

p3
int = e1

∫ t

−∞
dt1 F

(2)

03 (ret) + e2

∫ t

−∞
dt2 F

(1)

03 (ret). (5.12)

Therefore, the interference of outgoing electromagnetic waves leads to the interaction between
the sources. The first charge seems a ‘perfect absorber’ for the radiation given off by the second
one and vice versa.

5.1.1. Non-relativistic approximation. ‘Self-action’ contributions which arise due to volume
integration of T 03

(1) and T 03
(2) are obtained in [4], equation (3.5). Apart from the relativistic

Larmor terms, the third component of energy–momentum also contains the interference term
(5.12):

p3 =
2∑

a=1

[
p3

a,part +
2

3
e2
a

∫ t

−∞
dta a2

a(ta)va(ta)

]
+ e1

∫ t

−∞
dt1 F

(2)
03 (ret) + e2

∫ t

−∞
dt2 F

(1)
03 (ret).

(5.13)

In the non-relativistic approximation the momenta p3
a,part, a = 1, 2, become mava(t), Larmor

radiation terms are too small to be observed, and an action propagates instantaneously. It is
easy to show that the interaction term (5.12) vanishes in this approximation (it accords with
Newton’s third law). The total momentum (5.13) of our two-particle system becomes the
usual sum m1v1(t) + m2v2(t) in the non-relativistic approximation.

5.2. Zeroth component

In this subsection we trace a series of stages in the calculation of the volume integral

p0
int =

∫
�t

dσ0 T 00
int . (5.14)

In appendix A we perform the computation in detail.
The interference part T 00

int of ‘two-particle’ energy density (2.5) follows by substituting
equations (4.6) into equation (2.6). Taking into account the third line of (3.2), we obtain

4πT 00
int = e1e2

(r1r2)3

{
a1a2

[
1

2
(t − t1)

2 +
1

2
(t − t2)

2 − q2

2

]
+ r2b1b2 − (t − t1)(Z − z2)b1a2

− (Z − z1)(t − t2)a1b2 + (t − t1)(t − t2)b1b2

}
. (5.15)

Routine scrupulous calculations allow us to express the integrand
√−gT 00

int in the form of
combinations of partial derivatives in retarded times (see appendix A). The double derivative

∂2

∂t1∂t2

(
r2

qr1r2
+

k1k2

q

)
(5.16)

is involved. Here

k1 = v1(t − t1) − (Z − z1)

r1
k2 = v2(t − t2) − (Z − z2)

r2
. (5.17)

The double derivative can be written in the form either

∂

∂t1

[
∂

∂t2

(
r2

qr1r2
+

k1k2

q

)]
(5.18)
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or

∂

∂t2

[
∂

∂t1

(
r2

qr1r2
+

k1k2

q

)]
. (5.19)

There are two possible methods of integrating the expression (5.16). We can choose (5.19)
and apply the integration rule (5.4) under the first charge mapping. The result is

p0
int = e1

∫ t

−∞
dt1v1(t1)F

(2)
03 (ret) + e2

∫ t

−∞
dt2v2(t2)F

(1)
03 (ret) − e1e2

z1(t) − z2
[
t ret
2 (t)

] . (5.20)

On the other hand, we can choose (5.18) and use the integration rule (5.5) under the second
charge mapping. We obtain

p0
int = e1

∫ t

−∞
dt1 v1(t1)F

(2)
03 (ret) + e2

∫ t

−∞
dt2 v2(t2)F

(1)
03 (ret) − e1e2

z1
[
t ret
1 (t)

] − z2(t)
. (5.21)

Otherwise, the calculations give the ‘immovable core’ which describes the action of the fields
due to one charge on another (mutual interaction).

It is natural to interpret the ‘changeable shell’

− e1e2

z1(t) − z2
[
t ret
2 (t)

] (5.22)

or

− e1e2

z1
[
t ret
1 (t)

] − z2(t)
(5.23)

as the negative of interaction potential. The potential (5.22) is acausal: the first charge moves in
the retarded field of the second one while the second particle moves in the advanced field of the
first one. Similarly, the potential (5.23) ensures that the interaction can be both forward (2 to 1)
and backward (1 to 2) in time. Such models were first elaborated by Staruszkiewicz [11]. The
author shows that corresponding equations of motion can be reduced to ordinary differential
equations. Recently [12–14], there has been considerable interest in the time-asymmetric
model of the relativistic two-particle system.

5.2.1. Non-relativistic approximation. In the non-relativistic approximation a disturbance
travels with infinite speed. The immovable part of p0

int becomes the usual Coulomb potential:

p0
int

∣∣
c→∞ = −e1e2

∫ t

−∞
dt

v1(t)

[z1(t) − z2(t)]2
+ e1e2

∫ t

−∞
dt

v2(t)

[z1(t) − z2(t)]2

= e1e2

z1(t) − z2(t)
. (5.24)

And the changeable ‘shell’ becomes the same potential taken with opposite signs! The sum is
equal to zero; it is inconsistent with observation.

5.2.2. A very massive particle. Let the second charged particle be very massive, and the first
one be light. We use the Lorentz frame where the massive particle is at rest, i.e. v2 = 0. In
this approximation the immovable part of p0

int becomes the Coulomb potential too:

p0
int = −e1e2

∫ t

−∞
dt1

v1(t1)

[z1(t1) − z2,0]2
= e1e2

z1(t) − z2,0
. (5.25)

The changeable terms, either

− e1e2

z1(t) − z2,0
(5.26)
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or

− e1e2

z1
[
t ret
1 (t)

] − z2,0
(5.27)

distort the truth.
The integral of the bound part of the ‘self-action’ component T 0ν

(a) depends on the form
of a spacelike three-surface over which the volume integration is performed [3]. The result
is determined by the state of particle motion at the observation time only [3, 4]. While
the radiative part of the energy–momentum carried by electromagnetic field is invariant, it
is accumulated with time. Similarly, the immovable ‘core’ of p0

int is a functional of particle
paths while the changeable ‘shell’ consists of the functions of momentary positions of particles
(delay in action ensures the shifts in arguments in expressions (5.22) and (5.23)). The following
question now arises, if the ‘shell’ is a usual deformation of the bound electromagnetic ‘cloud’
which cannot be separated from a charged particle. The above approximations reinforce our
conviction that the ‘shell’ expresses the deformation of electromagnetic ‘clouds’ of charged
particles due to mutual interaction. Thus only the immovable terms should be taken into
account.

6. Interference part of the total angular momentum of the electromagnetic field

We now turn to the calculation of the total angular momentum tensor of the electromagnetic
field [5]:

Mµν
em =

∫
�t

dσ0 (yµT 0ν − yνT 0µ). (6.1)

Conservation of the space part M
ij
em of the tensor M

µν
em takes place due to invariance under

space rotations. Conservation of the mixed spacetime components, M0i
em, is due to invariance

under Lorentz transformations.
The structure of the electromagnetic field stress–energy tensor (2.5) suggests that the

interference part of M
µν
em follows by substituting T 0α

int for T 0α into (6.1).

6.1. Interference part of space components

Inserting the momentum densities (5.3) into

M
ij
int =

∫
�t

dσ0

(
yiT

0j
int − yjT 0i

int

)
(6.2)

and performing the coordinate transformation (3.3), we obtain the interference part of the
angular momentum M

ij
em. It is easy to show that integrand y1T 02

int − y2T 01
int is equal to zero

identically. The others, y1T 03
int −y3T 01

int and y2T 03
int −y3T 02

int , are proportional to sin ϕ and cos ϕ,
respectively. They vanish due to angle integration. Therefore

J k
int := εk

ijM
ij
int = 0. (6.3)

6.2. Interference part of spacetime components

It is easy to check that the integrands y0T 01
int − y1T 00

int and y0T 02
int − y2T 00

int are proportional to
sin ϕ and cos ϕ, respectively. Thus, both the components K1

int := −M01
int and K2

int := −M02
int

vanish due to angle integration. Only the third component

K3
int := −M03

int =
∫

�t

dσ0
(−y0T 03

int + y3T 00
int

)
(6.4)

is non-trivial.
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The integration is performed in appendix B. Apart from the immovable ‘core’

e1

∫ t

−∞
dt1

(
−t1F

(2)
03 (ret) + z1(t1)v1(t1)F

(2)
03 (ret)

)

+ e2

∫ t

−∞
dt2

(
−t2F

(1)

03 (ret) + z2(t2)v2(t2)F
(1)

03 (ret)
)

(6.5)

K3
int contains a changeable term, either

−z1(t)
e1e2

z1(t) − z2
[
t ret
2 (t)

] (6.6)

or

−z2(t)
e1e2

z1
[
t ret
1 (t)

] − z2(t)
. (6.7)

For the reason substantiated in the previous section we omit the changeable term as unphysical.

7. Equations of motion and their interpretation

The structure of the Maxwell energy–momentum tensor density determines the structure of
conserved quantities carried by electromagnetic field. The ‘two-particle’ electromagnetic field
stress–energy tensor (2.5) consists of the ‘individual’ densities and the interference term (2.6).
Thus a conserved quantity, say �, contains, apart from (individual) ‘self-action’ terms, also a
contribution from an interaction part:

� = �(1) + �(2) + �(12).

The ‘self-action’ expressions are obtained in [4] where a composite one-particle plus field
system is considered.

The Lorentz force

Fα
ab = ebF

α
(a)β(ret)uβ

b (7.1)

expresses the action of the (retarded) Liénard–Wiechert field due to charge a on charge b. u
β

b

denotes the (normalized) four-velocity vector(
u

β

b

)
:= (

u0
b, 0, 0, u3

b

) = 1√
1 − v2

b

(1, 0, 0, vb). (7.2)

Substituting (7.1) into (5.13) yields

p3 =
2∑

a=1

[
p3

a,part +
2

3
e2
a

∫ t

−∞
dta a2

a(ta)va(ta)

]
−

∫ t

−∞
dt1

√
1 − v2

1 F 3
21 −

∫ t

−∞
dt2

√
1 − v2

2 F 3
12.

(7.3)

Taking into account self-action expressions for energy ([4], equation (3.4)) and centre-of-mass
conserved quantity ([4], equation (3.7)), we obtain

p0 =
2∑

a=1

[
p0

a,part +
2

3
e2
a

∫ t

−∞
dta a2

a(ta)

]
−

∫ t

−∞
dt1

√
1 − v2

1 F 0
21 −

∫ t

−∞
dt2

√
1 − v2

2 F 0
12

(7.4)
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K3 =
2∑

a=1

[
−tp3

a,part + za(t)p
0
a,part +

2

3
e2
a

∫ t

−∞
dta a2

a(ta)[za(ta) − va(ta)ta]

+
4

3
e2
a

∫ t

−∞
dta

v2
a v̇a(

1 − v2
a

)2

]
+

∫ t

−∞
dt1

√
1 − v2

1

[
t1F

3
21 − z1(t1)F

0
21

]

+
∫ t

−∞
dt2

√
1 − v2

2

[
t2F

3
12 − z2(t2)F

0
12

]
(7.5)

where a2
a = v̇2

a

/(
1 − v2

a

)3
is the square aµaµ of four-acceleration. It is easy to rewrite these

conserved quantities in a manifestly covariant fashion.
We can construct equations of motion as follows. We calculate the total flows of

electromagnetic field energy, momentum and angular momentum which flow across the
hyperplane �t . We can do it at a time t + 
t . The change in these quantities should be
balanced by a corresponding change in those of the particles. Since the action is not propagated
instantaneously, the balance in a vicinity of the first charge as well as in a neighbourhood of
the second charge should be achieved separately. The analysis of (7.4) and (7.3) gives the
relativistic generalization of Newton’s second law

ṗ0
a,part = − 2

3e2
aa

2
a(t) +

√
1 − v2

aF
0
ba ṗ3

a,part = − 2
3e2

aa
2
a(t)va(t) +

√
1 − v2

aF
3
ba (7.6)

where loss of energy due to radiation is taken into account. From the differentiation of (7.5)
we arrive at the following equality:

−t
∑
a �=b

[
ṗ3

a,part +
2

3
e2
aa

2
a(t)va(t) −

√
1 − v2

aF
3
ba

]

+
∑
a �=b

za(t)

[
ṗ0

a,part +
2

3
e2
aa

2
a(t) −

√
1 − v2

aF
0
ba

]
− p3

1,part + v1(t)p
0
1,part

+
4

3
e2

1
v2

1 v̇1(
1 − v2

1

)2 − p3
2,part + v2(t)p

0
2,part +

4

3
e2

2
v2

2 v̇2(
1 − v2

2

)2 = 0. (7.7)

Taking into account the relativistic generalization of Newton’s second law (7.6), we see that
the bracketed expressions vanish. The remaining part does not contain the Lorentz forces at
all. Non-bracketed terms are of two types: (i) those evaluated at the first source, (ii) those
associated with the second charge. They vanish separately,

p3
a,part − va(t)p

0
a,part = 4

3
e2
a

v2
a v̇a(

1 − v2
a

)2 (7.8)

(cf [4], equation (3.11)).
A frontal collision of two charges is a very specific event. Any other two-particle motion

possesses non-trivial space components of total angular momentum. When analysing them
we can get the equations ([4], (3.10)). Together with equations of type (7.8) they constitute the
system of six linear equations in variables p

µ
part which does not possess a solution whenever

particle motion is accelerated. That is why I think that the ‘self-action’ problem is still
unsolved. Otherwise, the Teitelboim expression (1.1) for the four-momentum of accelerated
charge does not satisfy the equality (7.8) which arises from the invariance of the system under
Lorentz transformation.
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8. Conclusions

In the present paper, we determine the total four-momentum and total angular momentum of
a closed system of two point-like charged particles and electromagnetic fields. For the sake
of simplicity, we consider a frontal collision of asymptotically free particles. Calculations
are performed via the integration of energy and momentum densities over three-dimensional
hyperplane y0 = const. The crucial issue is that the Maxwell energy–momentum tensor
density is the sum of ‘one-particle’ densities and an ‘interference’ term (see equation (2.5)).
Therefore, the conserved quantities consist of individual ‘self-action’ terms and interaction
terms. Thus, the radiative part of the total four-momentum of a closed system of particles
plus field contains, apart from the usual relativistic Larmor terms, also a contribution from the
combination of the retarded Liénard–Wiechert fields. The latter is then nothing but the sum
of work done by Lorentz forces of point-like charges acting on one another.

We can briefly summarize our conclusions as follows:

• an interference of outgoing electromagnetic waves (retarded Liénard–Wiechert fields)
leads to the interaction between the sources;

• a point charge in otherwise charge-free space moves according to the law of inertia;
• a point charge within an interaction area radiates electromagnetic energy; the force of

radiative reaction arises from the direct action of a particle upon itself.

The structure of conserved quantities of a closed system of particles plus field implies
that the four-momentum of radiated charged particle is not proportional to its four-velocity.
Teitelboim’s expression for the particle four-momentum as a linear function of the four-
velocity and four-acceleration is inconsistent with the derivative of the ‘centre-of-mass’
conserved quantity. Therefore, the ‘renormalization of four-momentum’ cannot be reduced to
the commonly used ‘renormalization of mass’.
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Appendix A. Volume integration of the interference part of energy density

There is a chain of identities obtained via differentiation of (3.1):

∂Z

∂t1
= t − t1 − (Z − z1)v1

q
:= r1

q

∂Z

∂t2
= − t − t2 − (Z − z2)v2

q
:= − r2

q

∂r1

∂t1
= −1 + v2

1 − r1

q
v1 − (Z − z1)v̇1

∂r1

∂t2
= r2

q
v1

∂r2

∂t1
= − r1

q
v2

∂r2

∂t2
= −1 + v2

2 +
r2

q
v2 − (Z − z2)v̇2.

(A.1)

Hence one has again

ab

qr2
b

= ∂

∂tb

(
1

qrb

)
ba

qr2
a

= ∂

∂ta

(
va

qra

)
. (A.2)
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Having used these identities we rewrite the expression
√−gT 00

int in terms of the partial
derivatives with respect to the retarded times t1 and t2. For example, we transform the
first term in (5.15) as follows:

1

2
(t − t1)

2 a1a2

qr2
1 r2

2

= 1

2
(t − t1)

2 a1

r2
1

∂

∂t2

(
1

qr2

)

= ∂

∂t2

[
1

2
(t − t1)

2 a1

qr2
1 r2

]
− (t − t1)

2

2qr2

∂

∂t2

(
a1

r2
1

)

= ∂

∂t2

[
1

2
(t − t1)

2 a1

qr2
1 r2

]
+

1

2
(t − t1)

2 ∂

∂t1

(
v1

q2r2
1

)

= ∂

∂t2

[
1

2
(t − t1)

2 a1

qr2
1 r2

]
+

∂

∂t1

[
1

2
(t − t1)

2 v1

q2r2
1

]
+ (t − t1)

v1

q2r2
1

. (A.3)

The term under ∂/∂t2 takes the form

1

2
(t − t1)

2 a1

qr2
1 r2

= ∂

∂t1

[
(t − t1)

2

2qr1r2

]
+

t − t1

qr1r2
− 1

2
(t − t1)

2 v2

q2r2
2

.

On rearrangement, the final transformation looks as follows:

1

2
(t − t1)

2 a1a2

qr2
1 r2

2

= ∂2

∂t2∂t1

[
(t − t1)

2

2qr1r2

]
+

∂

∂t2

[
t − t1

qr1r2
− 1

2
(t − t1)

2 v2

q2r2
2

]

+
∂

∂t1

[
1

2
(t − t1)

2 v1

q2r2
1

]
+ (t − t1)

v1

q2r2
1

. (A.4)

As another example, we consider the term

r2b1b2

qr2
1 r2

2

= ∂

∂t1

[
r2 v1b2

qr1r
2
2

]
+

∂

∂t2

[
v1

(t − t2)
2
[
1 − v2

2

]
q2r2

2

]

= ∂

∂t2

[
r2 v2b1

qr2
1 r2

]
− ∂

∂t1

[
v2

(t − t1)
2
[
1 − v2

1

]
q2r2

1

]
(A.5)

which does not contain a ‘remnant’ in addition to partial derivatives (cf (A.4)).
The remaining terms constitute a polynomial of analogous structure:

1

qr2
1 r2

2

{
a1a2

[
1

2
(t − t1)

2 +
1

2
(t − t2)

2 − q2

2

]
− (t − t1)(Z − z2)b1a2

− (Z − z1)(t − t2)a1b2 + (t − t1)(t − t2)b1b2

}

= ∂

∂t1

[
r2 v1

q2r2
1

+
v1r2

q2r1
k1k2 +

1

qr1
− v1(t − t1) + v2(t − t2)

q2r1

]

+
∂

∂t2

[
−r2 v2

q2r2
2

− v2r1

q2r2
k1k2 +

1

qr2
+

v1(t − t1) + v2(t − t2)

q2r2

]

+
∂2

∂t1∂t2

[
r2

qr1r2
+

k1k2

q

]

:= ∂G1

∂t1
+

∂G2

∂t2
+

∂2G

∂t1∂t2
(A.6)

where k1 and k2 are defined by equations (5.17). (Prefactor e1e2/4π is omitted.)
Now we turn to volume integration. It is defined in subsection 5.1 of the present paper.
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The terms which are proportional to r2 are not essential in integration procedure. The
reason is that the radius (3.2) is equal to zero at the end points (3.4)–(3.11) of integrals. So,
the valuable part of (A.5) can be expressed as either

e1e2
∂

∂t2

[
v1

(t − t2)
2
[
1 − v2

2

]
q2r2

2

]
(A.7)

or

−e1e2
∂

∂t1

[
v2

(t − t1)
2
[
1 − v2

1

]
q2r2

1

]
. (A.8)

To calculate the integral of the partial derivative in t2 we use the integration rule (5.4):[∫ tret
1 (t)

−∞
dt1

∫ tadv
2 (t1)

tret
2 (t1)

dt2 +
∫ t

tret
1 (t)

dt1

∫ t ′2(t,t1)

tret
2 (t1)

dt2

]∫ 2π

0
dϕ e1e2

∂

∂t2

[
v1

(t − t2)
2
[
1 − v2

2

]
q2r2

2

]

= 2πe1e2

[∫ tret
1 (t)

−∞
dt1

v1(t1)

q2
(
t1, t

adv
2

) 1 − v2
(
tadv
2

)
1 + v2

(
tadv
2

)
−

∫ t

−∞
dt1

v1(t1)

q2
(
t1, t

ret
2

) 1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

) +
∫ t

tret
1 (t)

dt1
v1(t1)

q2(t1, t
′
2)

1 + v2(t
′
2)

1 − v2(t
′
2)

]
.

To proceed further, it is suitable to perform the changes of variables
(
t1, t

adv
2 (t1)

) �→ (
t ret
1 (t2), t2

)
in the first integral and (t1, t

′
2(t, t1)) �→ (t ′1(t, t2), t2) in the third integral. We arrive at

2πe1e2

[∫ t

−∞
dt2

v1
(
t ret
1

)
q2

(
t ret
1 , t2

) 1 − v2(t2)

1 + v1
(
t ret
1

) −
∫ t

−∞
dt1

v1(t1)

q2
(
t1, t

ret
2

) 1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
+

∫ t

tret
2 (t)

dt2
v1(t

′
1)

q2(t ′1, t2)
1 + v2(t2)

1 + v1(t
′
1)

]
. (A.9)

We use the rule (5.5) to find the integral of (A.8):[∫ tret
2 (t)

−∞
dt2

∫ tadv
1 (t2)

tret
1 (t2)

dt1 +
∫ t

tret
2 (t)

dt2

∫ t ′1(t,t2)

tret
1 (t2)

dt1

]∫ 2π

0
dϕ e1e2

∂

∂t1

[
−v2

(t − t1)
2
[
1 − v2

1

]
q2r2

1

]

= 2πe1e2

[
−

∫ tret
2 (t)

−∞
dt2

v2(t2)

q2
(
tadv
1 , t2

) 1 + v1
(
tadv
1

)
1 − v1

(
tadv
1

)
+

∫ t

−∞
dt2

v2(t2)

q2
(
t ret
1 , t2

) 1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

) −
∫ t

tret
2 (t)

dt2
v2(t2)

q2(t ′1, t2)
1 − v1(t

′
1)

1 + v1(t
′
1)

]
.

The change of variables
(
tadv
1 (t2), t2

) �→ (
t1, t

ret
2 (t1)

)
in the first integral is necessary. Thus we

obtain

2πe1e2

[
−

∫ t

−∞
dt1

v2
(
t ret
2

)
q2

(
t1, t

ret
2

) 1 + v1(t1)

1 − v2
(
t ret
2

) +
∫ t

−∞
dt2

v2(t2)

q2
(
t ret
1 , t2

) 1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

)
−

∫ t

tret
2 (t)

dt2
v2(t2)

q2(t ′1, t2)
1 − v1(t

′
1)

1 + v1(t
′
1)

]
. (A.10)
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Subtracting (A.9) from (A.10), we see that these expressions are equal to each other:∫ t

−∞
dt1

1

q2
(
t1, t

ret
2

) v1(t1) − v2
(
t ret
2

)
1 − v2

(
t ret
2

) +
∫ t

−∞
dt2

1

q2
(
t ret
1 , t2

) −v1
(
t ret
1

)
+ v2(t2)

1 + v1
(
t ret
1

)
+

∫ t

tret
2 (t)

dt2
1

q2(t ′1, t2)
−v1(t

′
1) − v2(t2)

1 + v1(t
′
1)

= − 1

z1(t1) − z2
(
t ret
2

)
∣∣∣∣∣
t1=t

t1→−∞

+
1

z1
(
t ret
1

) − z2(t2)

∣∣∣∣∣
t2=t

t2→−∞
− 1

z1(t
′
1) − z2(t2)

∣∣∣∣
t2=t

t2=tret
2 (t)

= 0.

(Prefactor 2πe1e2 is omitted.)
The only way to deal with the sum of first-order partial derivatives involved in (A.6) is

the method presented in subsection 5.1 of the present paper. Scrupulous calculations give∫
�t

dσ0

(
∂G1

∂t1
+

∂G2

∂t2

)

= 2πe1e2

[∫ t

−∞
dt1A

(
t1, t

ret
2

)
+

∫ t

−∞
dt2B

(
t ret
1 , t2

)
+

∫ t

tret
2 (t)

dt2C(t ′1, t2)

]
(A.11)

where

A (
t1, t

ret
2

) = − (1 − v1(t1))
(
1 + v2

(
t ret
2

))
q
(
t1, t

ret
2

) (
t − t ret

2 (t1)
) (

1 − v2
(
t ret
2

)) +
1 + v1(t1)

q
(
t1, t

ret
2

)
(t − t1)

+
1

q2
(
t1, t

ret
2

) v1(t1) − v2
(
t ret
2

)
1 − v2

(
t ret
2

) − 2v1(t1)
1

q2
(
t1, t

ret
2

) 1 + v2
(
t ret
2

)
1 − v2

(
t ret
2

)
B (

t ret
1 , t2

) = −
(
1 − v1

(
t ret
1

))
(1 + v2(t2))

q
(
t ret
1 , t2

) (
t − t ret

1 (t2)
) (

1 + v1
(
t ret
1

)) +
1 − v2(t2)

q
(
t ret
1 , t2

)
(t − t2)

(A.12)

+
1

q2
(
t ret
1 , t2

) v1
(
t ret
1

) − v2(t2)

1 + v1
(
t ret
1

) + 2v2(t2)
1

q2
(
t ret
1 , t2

) 1 − v1
(
t ret
1

)
1 + v1

(
t ret
1

)
C(t ′1, t2) = (1 − v1(t

′
1))(1 − v2(t2))

q(t ′1, t2)(t − t ′1(t, t2))(1 + v1(t
′
1))

+
1 + v2(t2)

q(t ′1, t2)(t − t2)

+
1

q2(t ′1, t2)
−v1(t

′
1) + v2(t2) − 2v1(t

′
1)v2(t2)

1 + v1(t
′
1)

.

The result involves divergent terms (those proportional to 1/(t − t1), 1/(t − t2) and
1/(t − t ′1)).

Let us consider the double derivative term (see equation (A.6)). Its contribution can be
computed in two different ways. For the first term of the expression under the double derivative
we have∫

�t

dσ0
∂2

∂t1∂t2

(
e1e2

r2

qr1r2

)
=

[∫ tret
1 (t)

−∞
dt1

∫ tadv
2 (t1)

tret
2 (t1)

dt2 +
∫ t

tret
1 (t)

dt1

∫ t ′2(t,t1)

tret
2 (t1)

dt2

]

×
∫ 2π

0
dϕ e1e2

∂

∂t2

[
−2(Z − z2)

q2r2

]



Wheeler and Feynman electrodynamics within the framework of retarded causality 9463

= 2πe1e2

[∫ t

−∞
dt1

1

q2
(
t1, t

ret
2

) 2

1 − v2
(
t ret
2

) +
∫ t

−∞
dt2

1

q2(t ret
1 , t2)

2

1 + v1
(
t ret
1

)
−

∫ t

tret
2 (t)

dt2
1

q2(t ′1, t2)
2

1 + v1(t
′
1)

]

=
[∫ tret

2 (t)

−∞
dt2

∫ tadv
1 (t2)
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1 (t2)

dt1 +
∫ t

tret
2 (t)

dt2

∫ t ′1(t,t2)
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1 (t2)

dt1

] ∫ 2π

0
dϕ e1e2

∂

∂t1

[
2(Z − z1)

q2r1

]
.

(A.13)

Both the integration rules under the first charge mapping and the second charge mapping lead
to the same result, while the contribution of the remaining part

∂2

∂t1∂t2

(
k1k2

q

)
= ∂

∂t2

[
1

q

∂

∂t1
k1k2 + k1k2

∂

∂t1

1

q

]

= ∂

∂t1

[
1

q

∂

∂t2
k1k2 + k1k2

∂

∂t2

1

q

]
(A.14)

substantially depends on the choice of integration rule (5.4) or (5.5).
The integration of the first term in between the square brackets gives the immovable ‘core’

of this contribution:[∫ tret
1 (t)

−∞
dt1

∫ tadv
2 (t1)

tret
2 (t1)

dt2 +
∫ t

tret
1 (t)

dt1

∫ t ′2(t,t1)

tret
2 (t1)

dt2

] ∫ 2π

0
dϕ e1e2

∂

∂t2

[
1

q

∂

∂t1
k1k2

]

= 2πe1e2

[∫ t

−∞
dt1D0

(
t1, t
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2

)
+

∫ t

−∞
dt2E0

(
t ret
1 , t2

)
+

∫ t

tret
2 (t)

dt2F0(t
′
1, t2)

]

=
[∫ tret

2 (t)

−∞
dt2

∫ tadv
1 (t2)

tret
1 (t2)

dt1 +
∫ t

tret
2 (t)

dt2

∫ t ′1(t,t2)

tret
1 (t2)

dt1

]

×
∫ 2π

0
dϕ e1e2

∂

∂t1

[
1

q

∂

∂t2
k1k2

]
. (A.15)

The integrands

D0
(
t1, t

ret
2

) = (1 − v1(t1))
(
1 + v2

(
t ret
2

))
q
(
t1, t

ret
2

) (
t − t ret

2 (t1)
) (

1 − v2
(
t ret
2

)) − 1 + v1(t1)

q
(
t1, t

ret
2

)
(t − t1)

+
1

q2
(
t1, t

ret
2

) −2 + 2v1(t1)v2
(
t ret
2

)
1 − v2

(
t ret
2

)
E0

(
t ret
1 , t2

) =
(
1 − v1

(
t ret
1

))
(1 + v2(t2))

q
(
t ret
1 , t2

) (
t − t ret

1 (t2)
) (

1 + v1
(
t ret
1

)) − 1 − v2(t2)

q
(
t ret
1 , t2

)
(t − t2)

(A.16)

+
1

q2
(
t ret
1 , t2

) −2 + 2v1
(
t ret
1

)
v2(t2)

1 + v1
(
t ret
1

)
F0(t

′
1, t2) = − (1 − v1(t

′
1))(1 − v2(t2))

q(t ′1, t2)(t − t ′1(t, t2))(1 + v1(t
′
1))

− 1 + v2(t2)

q(t ′1, t2)(t − t2)

+
1

q2(t ′1, t2)
2 + 2v1(t

′
1)v2(t2)

1 + v1(t
′
1)

annul the divergent terms in expressions (A.12).
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The changeable ‘shell’ follows from the volume integration of the second term in (A.14).
The calculation based on the integration rule (5.4) gives[∫ tret

1 (t)

−∞
dt1

∫ tadv
2 (t1)

tret
2 (t1)

dt2 +
∫ t

tret
1 (t)

dt1

∫ t ′2(t,t1)

tret
2 (t1)

dt2

] ∫ 2π

0
dϕ e1e2

∂

∂t2

[
k1k2

∂

∂t1

1

q

]

= 2πe1e2
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−∞
dt1

v1(t1)

q2
(
t1, t
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2

) −
∫ t

−∞
dt2
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(
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1

)
q2

(
t ret
1 , t2

) 1 + v2(t2)

1 + v1
(
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1

)
+
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2 (t)

dt2
v1(t

′
1)
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1 + v1(t
′
1)

]

= 2πe1e2

[∫ t

−∞
dt1D1
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2

)
+
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−∞
dt2E1

(
t ret
1 , t2

)
+

∫ t
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2 (t)

dt2F1(t
′
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]
.

(A.17)

The integration by means of (5.5) leads to[∫ tret
2 (t)

−∞
dt2

∫ tadv
1 (t2)
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1 (t2)

dt1 +
∫ t

tret
2 (t)

dt2
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] ∫ 2π

0
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∂

∂t1

[
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∂

∂t2

1

q

]

= 2πe1e2
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−∞
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(
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2
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1 − v2
(
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2

)
−
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−∞
dt2
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q2
(
t ret
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) −
∫ t
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2 (t)

dt2
v2(t2)

q2(t ′1, t2)

]

= 2πe1e2

[∫ t

−∞
dt1 D2

(
t1, t
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2

)
+

∫ t

−∞
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(
t ret
1 , t2

)
+

∫ t
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2 (t)
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′
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]
.

(A.18)

Subtracting (A.17) from (A.18), we obtain the paradoxical equality

e1e2

z1(t) − z2
[
t ret
2 (t)

] = e1e2

z1
[
t ret
1 (t)

] − z2(t)
.

(Factor 2π is omitted.) Therefore, expression (A.17) is not equal to expression (A.18).
Summing up all the contributions (A.11), (A.13), (A.15), (A.17), and either (A.10) or

(A.9), we obtain the expression (5.20) for the interference part of energy. Substituting (A.18)
for (A.17), we arrive at the expression (5.21).

Appendix B. Volume integration of the interference part of the third component of the
‘centre-of-mass’ density

Having done the coordinate transformation (3.3) in (6.4), we obtain

K3
int = −t

∫
�t

dσ0 T 03
int +

∫
�t

dσ0 ZT 00
int . (B.1)

Volume integration of the interference part of the third component of the electromagnetic field
momentum density is performed in subsection 5.1 of the present paper (see final expression
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(5.12)). To compute the integral of ZT 00
int we rewrite the integrand

√−gZT 00
int = e1e2

4π

Z

qr2
1 r2

2

{
r2b1b2 + a1a2

[
1

2
(t − t1)

2 +
1

2
(t − t2)

2 − q2

2

]

− (t − t1)(Z − z2)b1a2 − (Z − z1)(t − t2)a1b2 + (t − t1)(t − t2)b1b2

}
(B.2)

as a sum of partial derivatives in retarded times t1 and t2. The first term can be rewritten in the
form

Z

qr2
1 r2

2

r2b1b2 = ∂

∂t1

[
−Zv2

(t − t1)
2
(
1 − v2

1

)
q2r2

1

+ r2 v1v2

q2r1
− v2(Z − z2)

q2

]

+
∂

∂t2

[
Zr2 v2b1

qr2
1 r2

+
t − t1

q2

]
(B.3)

or

Z

qr2
1 r2

2

r2b1b2 = ∂

∂t2

[
Zv1

(t − t2)
2
(
1 − v2

2

)
q2r2

2

− r2 v1v2

q2r2
+

v1(Z − z1)

q2

]

+
∂

∂t1

[
Zr2 v1b2

qr1r
2
2

− t − t2

q2

]
. (B.4)

(Prefactor e1e2/4π is omitted.) The volume integration can be handled via the rules (5.4) and
(5.5). Taking the integrand in the form (B.3) we obtain∫

�t

dσ0 Z
e1e2

(r1r2)3
r2b1b1 = e1e2

2

{
−

∫ t

−∞
dt1

[
z1(t1)v2

(
t ret
2

) 1 + v1(t1)

q2
(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
+ (t − t1)

1 + v2
(
t ret
2

)
q2

(
t1, t

ret
2

) (
1 − v2

(
t ret
2

)) +
v2

(
t ret
2

)
(1 − v1(t1))

q
(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
]

+
∫ t

−∞
dt2

[
z2(t2)v2(t2)

1 − v1
(
t ret
1

)
q2

(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
+ (t − t2)

1 − v2(t2)

q2
(
t ret
1 , t2

) (
1 + v1

(
t ret
1

)) +
1 + v2(t2)

q
(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
]

+
∫ t

tret
2 (t)

dt2

[
−z2(t2)v2(t2)

1 − v1(t
′
1)

q2(t ′1, t2)(1 + v1(t
′
1))

− (t − t2)
1 + v2(t2)

q2(t ′1, t2)(1 + v1(t
′
1))

+
1 − v2(t2)

q(t ′1, t2)(1 + v1(t
′
1))

]}
. (B.5)

If we take the integrand in the form (B.4), we arrive at∫
�t

dσ0 Z
e1e2

(r1r2)3
r2b1b1 = e1e2

2

{
−

∫ t

−∞
dt1

[
z1(t1)v1(t1)

1 + v2
(
t ret
2

)
q2

(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
+ (t − t1)

1 + v1(t1)

q2
(
t1, t

ret
2

) (
1 − v2

(
t ret
2

)) +
1 − v1(t1)

q
(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
]

+
∫ t

−∞
dt2

[
z2(t2)v1

(
t ret
1

) 1 − v2(t2)

q2
(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
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+ (t − t2)
1 − v1

(
t ret
1

)
q2

(
t ret
1 , t2

) (
1 + v1

(
t ret
1

)) − v1
(
t ret
1

)
(1 + v2(t2))

q
(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
]

+
∫ t

tret
2 (t)

dt2

[
z2(t2)v1(t

′
1)

1 + v2(t2)

q2(t ′1, t2)(1 + v1(t
′
1))

− (t − t2)
1 − v1(t

′
1)

q2(t ′1, t2)(1 + v1(t
′
1))

− v1(t
′
1)(1 − v2(t2))

q(t ′1, t2)(1 + v1(t
′
1))

]}
. (B.6)

Subtracting (B.6) from (B.5), we obtain the identity

−
∫ t

−∞
dt1

d

dt1

t − t1 + z1(t1)

z1(t1) − z2
(
t ret
2

) −
∫ t

−∞
dt2

d

dt2

t − t2 − z2(t2)

z1
(
t ret
1

) − z2(t2)
−

∫ t

tret
2 (t)

dt2
d

dt2

t − t2 + z2(t2)

z1(t
′
1) − z2(t2)

= − z1(t)

z1(t) − z2
[
t ret
2 (t)

] +
z2(t)

z1
[
t ret
2 (t)

] − z2(t)

+
z2

[
t ret
2 (t)

]
+ t − t ret

2 (t)

z1(t) − z2
[
t ret
2 (t)

] − z2(t)

z1
[
t ret
2 (t)

] − z2(t)
= 0.

The remaining terms of equation (B.2) constitute the polynomial being the following sum
of partial derivatives:

e1e2

4π

Z

qr2
1 r2

2

{
a1a2

[
1

2
(t − t1)

2 +
1

2
(t − t2)

2 − q2

2

]
− (t − t1)(Z − z2)b1a2

− (Z − z1)(t − t2)a1b2 + (t − t1)(t − t2)b1b2

}

= e1e2

4π

{
∂

∂t1

[
r2

q2r1
+

r2

q2
k1k1 − t − t1

q2
+ ZG1

]

+
∂

∂t2

[
− r2

q2r2
− r1

q2
k1k1 +

t − t2

q2
+ ZG2

]
+

∂2

∂t1∂t2
ZG

}
(B.7)

where the functions G1,G2 and G are defined in equation (A.6).
The integration of the first-order partial derivatives gives

e1e2

2

{∫ t

−∞
dt1

[
− v1(t1)

q
(
t1, t

ret
2

) − (t − t1)
v1(t1) + v2

(
t ret
2

) − 2v1(t1)v2
(
t ret
2

)
q2

(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
+ [z1(t1) + t − t1]A (

t1, t
ret
2

) ]
+

∫ t

−∞
dt2

[
− v2(t2)

q
(
t ret
1 , t2

)
− (t − t2)

v1
(
t ret
1

)
+ v2(t2) + 2v1

(
t ret
1 )v2(t2

)
q2

(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
+ [z2(t2) − t + t2]B (

t ret
1 , t2

) ]
+

∫ t

tret
2 (t)

dt2

[
− v2(t2)

q(t ′1, t2)

− (t − t2)
v1(t

′
1) − v2(t2) − 2v1(t

′
1)v2(t2)

q2(t ′1, t2)(1 + v1(t
′
1))

+ [z2(t2) + t − t2]C(t ′1, t2)
]}

(B.8)
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where the expressions A(
t1, t

ret
2

)
,B(

t ret
1 , t2

)
and C(t ′1, t2) are defined in appendix A (see

equations (A.12)).
The double derivative term can be expressed in the form

∂

∂t1

[
Z

∂

∂t2

(
r2

qr1r2
+

k1k2

q

)
− r2

q2
k1k2

]
(B.9)

or

∂

∂t2

[
Z

∂

∂t1

(
r2

qr1r2
+

k1k2

q

)
+

r1

q2
k1k2

]
. (B.10)

To integrate the expression partial derivative in t2 we apply the integration rule (5.4). We
obtain

e1e2

2

{∫ t

−∞
dt1

[
−(t − t1)

1 − v1(t1)

q2
(
t1, t

ret
2

) − 1 − v1(t1)

q
(
t1, t

ret
2

) + [z1(t1) + t − t1]D01
(
t1, t

ret
2

)]

+
∫ t

−∞
dt2

[
(t − t2)

1 + v2(t2)

q2
(
t ret
1 , t2

) + [z2(t2) − t + t2]E01
(
t ret
1 , t2

)]

+
∫ t

tret
2 (t)

dt2

[
(t − t2)

1 − v2(t2)

q2(t ′1, t2)
+ [z2(t2) + t − t2]F01(t

′
1, t2)

]}
(B.11)

where

D01
(
t1, t

ret
2

) = D0
(
t1, t

ret
2

)
+ D1

(
t1, t

ret
2

)
E01

(
t ret
1 , t2

) = E0
(
t ret
1 , t2

)
+ E1

(
t ret
1 , t2

)
F01(t

′
1, t2) = F0(t

′
1, t2) + F1(t

′
1, t2)

and the functions in right-hand sides are given by equations (A.16) and (A.17).
The integration due to the coordinate system centred on the world line of the second

particle leads to

e1e2

2

{∫ t

−∞
dt1

[
−(t − t1)

1 − v1(t1)

q2
(
t1, t

ret
2

) + [z1(t1) + t − t1]D02
(
t1, t

ret
2

)]

+
∫ t

−∞
dt2

[
(t − t2)

1 + v2(t2)

q2
(
t ret
1 , t2

) +
1 + v2(t2)

q
(
t ret
1 , t2

) + [z2(t2) − t + t2]E02
(
t ret
1 , t2

)]

+
∫ t

tret
2 (t)

dt2

[
(t − t2)

1 − v2(t2)

q2(t ′1, t2)
− 1 − v2(t2)

q(t ′1, t2)
+ [z2(t2) + t − t2]F02(t

′
1, t2)

]}

(B.12)

where

D02
(
t1, t

ret
2

) = D0
(
t1, t

ret
2

)
+ D2

(
t1, t

ret
2

)
E02

(
t ret
1 , t2

) = E0
(
t ret
1 , t2

)
+ E2

(
t ret
1 , t2

)
F02(t

′
1, t2) = F0(t

′
1, t2) + F2(t

′
1, t2).

The functions on the right-hand sides are given by equations (A.16) and (A.18).
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Summing up all the contributions (B.8), (B.11) and either (B.5) or (B.6) we obtain the
expression∫

�t

dσ0ZT 00
int = −e1e2

∫ t

−∞
dt1[z1(t1)v1(t1) + t − t1]

1 + v2
(
t ret
2

)
q2

(
t1, t

ret
2

) (
1 − v2

(
t ret
2

))
+ e1e2

∫ t

−∞
dt2[z2(t2)v2(t2) + t − t2]

1 − v1
(
t ret
1

)
q2

(
t ret
1 , t2

) (
1 + v1

(
t ret
1

))
− z1(t)

e1e2

z1(t) − z2
[
t ret
2 (t)

] .

Taking into account the first term on the right-hand side of (B.1), we obtain the stable expression
(6.5) for the interference part of the third component of the ‘centre-of-mass’ conserved quantity
plus changeable term (6.6). If we use (B.12) instead of (B.11), we obtain the changeable term

−z2(t)
e1e2

z1
[
t ret
1 (t)

] − z2(t)

which should be substituted for the last term in this expression.
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